theory of equations

方程论

  • The generalization is quite similar to the corresponding one in the theory of differential equations .

    这一推广和对应的微分 方程 理论的推广相当类似。

  • The theory of dynamic equations on time scales provides a unified theory for continuous and discrete equations or systems .

    时间尺度上 动力 系统 研究,把连续与离散系统统一了起来。

  • The attractors theory of Navier-Stokes Equations plays a great role in theory and applying when study turbulence and predict the ' future ' behav-ior also in industry such as ships manufacture and airplane design and etc.

    不可压缩液体运动的Navier-Stokes 方程的吸引子 理论对于湍流理论研究和预测长时行为等都具有极大的理论意义和实用价值,它对船舶制造、飞机设计等行业中有着重要的指导意义。

  • The theory of impulsive differential equations is not only richer than corresponding theory of differential equations but also represents a more natural framework for mathematical modelling of many real world phenomena .

    脉冲微分方程比相应 微分 方程 理论丰富,而且它更加精确和实际的刻画了许多自然现象。

  • Based on the theory of differential equations the authors assume that energy flows on first and second order processes then establish and analyse the compartment model .

    以微分 方程 理论为基础,假设能量按一级和二级动力学过程流动,建立了生态网络中的能量流动分室模型并进行了分析。

  • The singular boundary problems of nonlinear differential equations are important subjects in the theory of differential equations .

    非线性微分方程奇异边值问题是微分 方程 理论中的一个重要课题。

  • In the study of the qualitative theory of differential equations especially in the study of the stability of differential equations the estimate of solutions and the boundedness of solutions Gronwall-Bellman-Bihari inequality can be used as handy tools .

    在探讨微分 方程定性 理论中,尤其在探讨微分方程(组)的稳定性、解的估计及有界性的过程中,Gronwall-Bellman-Bihari不等式是一强有力的工具。

  • First we present numerical stability theory of delay differential equations and parallel methods .

    首先,我们介绍了延迟微分 方程数值 的稳定性 理论及并行算法的发展情况。

  • In the first one we introduce the history of the qualitative and bifurcation theory of differential equations some present results and our main work .

    第一部分文献综述,介绍了 分支 理论的发展历史及其现状,并简要叙述了本文的主要工作。

  • The theory of dynamic equations on time scales as the unification of differential and difference equations can explain deeply the essential difference between them and provide accurate information of phenomena that manifest themselves partly in continuous time and partly in discrete time .

    时间尺度上动力 方程 理论作为微分 方程和差分方程的统一,能更好地洞察二者之间的本质差异,还可以更精确地描述那些有时连续出现而有时离散出现的现象。

  • It will motivate the development of qualitative theory of difference equations .

    本文 差分 方程定性 理论的发展有重要的促进作用。

  • The plane pencil theorem in space analytic geometry is proved by means of theory of linear equations .

    引用线性 方程 理论证明空间解析几何中的平面束定理。

  • Two Results on the Complex Oscillation Theory of Differential Equations with Polynomial Coefficients

    关于多项式系数微分 方程复振荡 理论的两个结果

  • In this paper the problem of the approximate function sequences of the axisymmetric large deflection of thin shallow revolution shells are structured by the theory of integral equations and the existance the uniform convergence and the uniqueness are also confirmed .

    本文使用积分 方程 理论构造了旋传扁壳的轴对称大挠度问题的逼近函数序列,证明了其解的存在性、一致收敛性和唯一性。

  • Aiming at the solving problem of equilibrium solution of this nonlinear model geometry theory of differential equations is adopted and the relative calculation formula is given .

    采用微分 方程几何 理论分析河流 综合水质模型的 基本 方程,探讨了河流综合水质模型的平衡状态解的求解方法,并给出相关计算公式。

  • Firstly the paper presented the theory of Multiple Rational Function System ( RFS ) and electrical network theory . It highlights the theory of state equations of RLCM active network .

    论文首先介绍了多元有理函数系统(RFS)理论及电网络理论,着重介绍了RLCM有源网络 分析的状态 方程 理论和作者在这方面的研究工作。

  • In the waveguide problems of this paper results obtained cannot be directly found in the existing literature and have been worked out from fundamental theory of differential equations .

    在本文所讨论的波导问题中,所得结果不能直接从现有文献中导出。我们已经从基本微分 方程 理论中算出了这些结果。

  • Galois Theory is the crowning achievement of the ( algebraic ) theory of equations and the most important thing is that Galois Theory has opened another new and wide world for mathematics while it closed the door of the ( algebraic ) theory of equations .

    伽罗瓦理论是 方程 理论的最高成就,更重要的是它在终结旧的研究的同时又为数学研究开启了一片全新的广阔大地。

  • Discusses the problems of chaos and its control of a class of singular biological economy system by the theory of differential-algebraic equations .

    利用微分代数 方程 理论研究了一类广义生物经济系统的混沌及混沌控制问题。

  • It is that different types of problems presented in these areas leading to the rapid development of the solving theory of equations making the solving of congruence equations become one of the most active and popular topics in both the field of mathematics and cryptography research .

    正是这些领域提出的许多不同类型的问题促进了同余 方程 理论的快速发展,使得同余方程组求解问题成为当今数学和密码学领域中最活跃、最热门的研究课题之一。

  • The part of algebra that deals with the theory of linear equations and linear transformation .

    有关线性 方程与线性变换 理论的代数部分。

  • Using monotone method and invariant region theory of reaction-diffusion equations it is proved that the solutions are uniformly bounded and it is shown that all solutions asymptotically enter a fixed region in phase space .

    应用反应扩散 方程的单调方法和不变区域 理论,证明了解是一致有界的,且所有解最终进入相空间中的一个固定区域。

  • In this paper by using the theory of differential equations we discuss the propagation regularity of computer viruses especially the virus propagation model for the latent period .

    本文利用微分 动力 系统 理论 研究了计算机单种病毒的传播规律,特别是研究了考虑计算机病毒潜伏期的病毒传播模型。

  • In terms of the mathematical treatment the presence of impulses gives the system a mixed nature both continuous and discrete . The theory of impulsive differential equations is much richer than the corresponding theory of differential equations without impulsive effects .

    在数学处理上,脉冲的出现使得系统具有混合性,既有连续的特点,又有离散的特性,因而脉冲微分方程的理论也比相应的连续 微分 方程 理论丰富得多。

  • This paper deals with generalized Cauchy-Riemann system in even dimensions which is transformed to an equation similar to the ones in the plane by using the theory of governing equations .

    研究了偶数维空间上的广义CauchyRiemann方程 ,利用有限伸张映射的 控制 微分 方程 理论,将偶数维空间上的广义CauchyRiemann方程 转化为一个类似于平面上的方程的形式。

  • A model of evolutionary game is designed and the EES solutions of the model are obtained by using the theory of differential equations . Based on the analysis we put forward the incentives mechanism for enterprises joining a cluster . 3 .

    使用微分 方程稳定性 理论求出了该博弈模型的稳定均衡解,并画出演化博弈的相图进行分析,在分析的基础上提出了企业入群的激励机制。

  • On the other hand Lyapunov second method plays an important role in the establishment and development of stability theory of differential equations .

    Lyapunov第二方法则对微分 方程的稳定性 理论的建立和发展起到了重要的作用。

  • Some Notes on the Theory of Linear Equations

    关于线性 方程 理论的若干注记