belief function

[bɪˈlif ˈfʌŋkʃən][biˈli:f ˈfʌŋkʃən]

可信度函数

  • Based on data fusion technique a new method for constructing belief function is adopted for flow regime identification of two phase flow and testified in the gas solid fluidized bed system . Research results show that the adopted method is effective .

    基于数据融合技术,针对两相流流型辨识,采用了一种新的函数构造方法,并在气固流化床系统中进行了验证,实验结果表明所采用的 信度 函数构造方法是有效的。

  • In the following part we define a couple of new approximate operators and a couple of corresponding new approximate measure operators in this way inner measure belief function and lower probability all can be considered as the particular cases of this lower approximate measure .

    通过定义一对新的逼近算子以及相应的一对逼近测度,使内测度、 信任 函数、随机集上的下概率均可表示为此下逼近测度结构下的一种特例。

  • This paper puts forward an algorithm that employs belief function theory to combine the classification results from several text classifier .

    文章提出使用近年在传统 概率统计方法之上发展起来的 信任 函数理论和方法对多个文本分类器进行组合使用。具体方法是使用 信任函数将分类结果进行综合,得到最终的分类结果。

  • Based on rough set theory the relationship between belief function and inner measure belief function and lower probability of a random set are discussed then we give a interpretation of these uncertainty measure .

    本文以粗糙集为基础,研究了 信任 函数与内测度、信任函数与随机集的下概率之间的关系,并给出了它们基于粗糙集理论的解释。

  • The fusion belief function assignment is gotten by using D-S rule and fuzzy logic theory and fault component is found .

    再利用D-S联合规则结合模糊逻辑理论,得到融合后的 信度 函数分配,从而确定故障元件。

  • Fault-Tolerant Interval Integration Applying Belief Function

    应用 信任 函数的容错区间估计融合方法

  • Application of Belief Function for Combat Effectiveness Analysis

    信度 函数在作战效能分析中的运用

  • The experimental results confirmed the major predictions of the support theory contrary to Bayesian model belief function and regressive model .

    实验结果与支持理论的预测相符,而与贝叶斯模型、 信念 函数和回归模型的预测不一致。

  • Then get the whole belief function in the problems region by composing every belief function of each expert ;

    然后,对每个专家的信度函数进行合成,得到整个问题域上的 信度 函数

  • The thesis mainly researches the uncertain information fusion based on the belief function theory .

    本文主要研究基于 信任 函数理论的不确定性信息融合技术。

  • The trust interval can be built by the belief function and the plausible function to measure the degree of uncertainty of the evidences .

    证据理论用 信度 函数与似然函数构建证据的信任区间,通过信任区间对证据的不确定性进行度量,可以很好的表示未知信息的不确定性程度。

  • Extension Theorem of Consonant Belief Function on Fuzzy Sets

    Fuzzy集合上的一致 信任 函数扩张定理

  • The Belief Function in Human Development

    人之发展中的 信仰 功能

  • The belief function is to adjust the needs in heart and to form a firm faith on laws .

    信仰 功能调整内心需要,坚定法律信念。

  • Through D-S data fusion rules using the belief function the belief function assignment is obtained to solve the multi-sensors selection problem and to have the accuracy localization data of pipeline robot .

    通过 D-S证据融合规则得到融合证据,解决了多传感器定位中决策传感器的选择问题,以实现管道机器人准确、快速地定位。

  • Then raised the evidential network modeling means which as directed graph to topology structure as conditional belief function to parameter model analysised the forward reasoning and backward reasoning algorithm deeply .

    然后,提出了以有向图为拓扑结构、以条件 信任 函数为参数模型的证据网络建模方法,深入分析了前向推理和后向推理算法。

  • Application of Belief Function Theory in Evaluation of Simulation

    信任 函数理论在仿真评估中的应用

  • For the advantages of belief function theory in uncertain information representing and reasoning it has been applied widely in the domain of uncertain information fusion .

    信任 函数理论在不确定信息的表示与推理方面具有明显优势,被广泛应用于信息融合领域。

  • Research on fusion recognition algorithm for different reliable sensors Based on the belief function theory

    传感器可靠性相异的 信任 函数理论融合识别算法研究

  • Belief Function and Boost-based Combination Model for Multi Text Classifier

    基于Boost和 信任 函数的多文本分类器组合模型

  • According to different precision the sensor priority factor is calculated based on which the belief function is obtained .

    在考虑3种定位方法精度条件下,给出了传感器的优先权系数计算方法与基于优先权系数的 D-S 证据融合 信度 函数

  • Evidence theory uses basic probability assignment function belief function and plausibility function to handle uncertain problems . And evidence theory has significant superiority in the field of information fusion .

    证据理论用基本可信度分配函数、 信任 函数、似然函数处理不确定性问题,在信息融合中存在显著的优势。

  • In this paper relation partitioning is introduced into relational databases . The belief function of evidences is obtained using probability distribution in extension space . A simplified method for computing Dempster-Shafer formula of evidence combination is given and the applications in expert systems are discussed .

    本文在关系数据库上引进了关系分划,利用外延空间上的概率分布得到了证据的 信任 函数,并给出了证据合成的Dempster-Shafer公式的简化计算方法及在专家系统中的应用。

  • The belief function assignment of two sensors to circuit is obtained through the measurement results of the temperature and voltage of circuit component .

    通过检测电路工作时电子元件的温度和关键点电压两方面数据信息,得出两传感器对各待诊断元件的 信度 函数分配。

  • The new algorithm makes the best of the advantage of belief function theory for handling uncertainty revises the outputs of the relevant leaf nodes using the discounting rule takes into account the test attribute weights and thus improves the classification precision and reliability .

    新算法充分利用 信度 函数理论处理不确定信息的优势,采用折扣规则修正叶节点的输出,考虑了测试属性权重对分类结果的影响,提高了分类的精度和可靠性。

  • Because some combat effectiveness indexes which are related to human behavior are difficult to be quantified with belief function to explore indefinite problems .

    针对某些作战效能指标由于与人的行为等因素关系密切而难以量化,运用 信度 函数探索不确定评价问题。

  • By comparing rough sets and random sets we derive the relation between belief function and lower probability .

    首先将粗糙集与随机集作了比较,并由此得出了 信任 函数与下概率的关系。

  • By using transferable belief model the basic belief assignment belief function value and combination evidence are obtained from the separate primary fault identification based on accessible node voltages and temperature information respectively .

    该法首先利用可传递置信模型分别对基于可测点电压的故障预识别结果和基于温度特征信息的故障预识别结果进行计算,以获得基本置信分配、 置信 函数值和组合概率。

  • Compared with other generalized methods the method is more effective in avoiding the insensitivity problem of belief function to the change of fuzzy focal elements and catching information from the change of fuzzy focal elements .

    信任 函数对某些焦点元素的显著变化敏感及从模糊焦元变化中获取更多的信息方面,该方法比其它模糊扩展方法有效。

  • Belief Function Combination and Local Conflict Management

    信任 函数组合与局部冲突处理