superlattice structure

超点阵结构

  • The characteristics of Auger depth profile as a method for superlattice structure analysis as well as its limitations are discussed .

    u8ba8u8bbau4e86u7528u4fc4u6b47u6df1u5ea6u5256u9762u5206u5e03u4f5c u8d85 u6676u683c u7ed3u6784u5206u6790u7684u7279u70b9u53cau5176u5c40u9650u6027u3002

  • The two structures of BMT main phase that is 1:2 ordered hexagonal superlattice and disordered cubic structure reflections were marked in XRD patterns by crystallography .

    u901au8fc7u6676u4f53u5b66u8ba1u7b97uff0cu6807u5b9au51faBMTu4e3bu6676u76f8u5b58u5728u7684u4e24u79cdu7ed3u6784uff0c1uff1a2u6709u5e8fu516du65b9 u8d85 u6676u683c u7ed3u6784u548cu65e0u5e8fu7acbu65b9 u7ed3u6784u3002

  • In order to study the energy band fold in phononic crystal superlattice the plane wave expansion theory is been used to analyze the band structure of phononic crystal superlattice .

    u4e3au4e86u7814u7a76u58f0u5b50u6676u4f53 u8d85 u6676u683cu7684u80fdu5e26u6298u53e0u73b0u8c61uff0cu5229u7528u5e73u9762u6ce2u5c55u5f00u6cd5u7ed3u5408u8d85u6676u80deu65b9u6cd5u5206u6790u4e86u58f0u5b50u6676u4f53u8d85u6676u683cu7684u80fdu5e26 u7ed3u6784u3002

  • The structure of optical superlattice also changes from one-dimension to two-dimension from single period to quasi-period even to more complex structure .

    u8d85 u6676u683cu7ed3u6784u4e5fu4eceu4e00u7ef4u63a8u5e7fu5230u4e8cu7ef4uff0cu4eceu5468u671f u7ed3u6784u63a8u5e7fu5230u51c6u5468u671f u7ed3u6784uff0cu751au81f3u662fu590du6742u7684u975eu5468u671f u7ed3u6784uff0cu4eceu800cu4f7fu5f97u5149u5b66 u8d85 u6676u683cu53c2u4e0eu7684u975eu7ebfu6027 u8026u5408u8fc7u7a0bu53d8u7684u66f4u52a0u590du6742u3002

  • Spontaneous emission of an atom near the surface of a superlattice film with periodic or quasi-periodic structure

    u5468u671fu6216u51c6u5468u671f u8d85 u6676u683cu8584u819cu8868u9762u5438u9644u539fu5b50u7684u81eau53d1u8f90u5c04 u6027u8d28

  • Studies on Superlattice Structure of Metallic Multilayer Film

    u91d1u5c5eu591au5c42u819c u8d85 u6676u683c u7ed3u6784u7814u7a76

  • Research on One dimensional Superlattice Structure of In_ ( 1-x ) Al_xAs / GaAs by X-ray Diffraction and Raman Scattering

    Inuff081-xuff09AlxAs/GaAsu4e00u7ef4 u8d85 u70b9u9635 u7ed3u6784u7684Xu5c04u7ebfu884du5c04u548cRamanu6563u5c04u7814u7a76

  • HRTEM images show the nanowires having layered superlattice structure with perfect commensurability and and exactly four In / Zn-O layers between two adjacent In-O layers .

    u9ad8u5206u8fa8u900fu5c04u7535u955cu7167u7247u663eu793au8be5u7eb3u7c73u7ebfu5177u6709u5b8cu7f8eu516cu5ea6u7684 u8d85 u6676u683cu5c42u72b6 u7ed3u6784uff0cu6bcfu4e24u5c42In-Ou5c42u95f4u5939u56dbu5c42In/Zn-Ou5c42u3002

  • Our results indicate that the quantum dot superlattice structure with spatial ordering is more suitable to be utilized in the infrared photodetector than the structure without spatial ordering .

    u7ed3u679cu8868u660eu7a7au95f4u6709u5e8fu7684u91cfu5b50u70b9 u8d85 u6676u683c u7ed3u6784u6bd4u7a7au95f4u65e0u5e8fu7684u91cfu5b50u70b9 u8d85u6676u683cu66f4u9002u5b9cu4f5cu7ea2u5916u63a2u6d4bu5668u7ed3u6784u3002

  • Superlattice structure 's X-ray diffraction analyzing and structure parameters 's calculating

    u8d85 u6676u683c u7ed3u6784Xu5c04u7ebfu884du5c04u5206u6790u53cau5176u7ed3u6784u53c2u6570u7684u8ba1u7b97

  • Measurement of One-Dimensional MBE GaAs / AlAs Superlattice Structure Parameters by X-Ray Double Crystal Diffractometry

    MBEGaAs/AlAsu4e00u7ef4 u8d85 u6676u683c u7ed3u6784u53c2u6570u7684Xu5c04u7ebfu53ccu6676u884du5c04u6d4bu91cf

  • Therefore this paper focuses on the following works . 1 . Metal organic chemical vapor deposition ( MOCVD ) growth of Si-doped InGaN / GaN quantum well superlattice sacrificial layer for the LED structure .

    u56e0u6b64uff0cu672cu6587u56f4u7ed5u9009u62e9u6027u5265u79bbGaNu5916u5ef6u505au4e86u5982u4e0bu56dbu65b9u9762u5de5u4f5cuff1a1.u91d1u5c5eu6709u673au5316u5b66u6c14u76f8u6c89u79efuff08MOCVDuff09u751fu957fu5177u6709Siu63bau6742u7684InGaN/GaNu91cfu5b50u9631 u8d85 u6676u683cu727au7272u5c42u7684u5168 u7ed3u6784u7684LEDu3002

  • Calculating of X-ray diffraction kinematical theory on STRAIN-LAYER superlattice structure parameters

    u534au5bfcu4f53 u8d85 u6676u683c u7ed3u6784u53c2u6570u7684Xu5c04u7ebfu884du5c04u8fd0u52a8u5b66u7406u8bbau7684u8ba1u7b97

  • Si / SiO 2 superlattice structure was designed and prepared by rf magnetron sputtering technique . The high pure polycrystal Si was taken as sputtering target . SiO 2 film was obtained by using Ar + O 2 as sputtering atmosphere ;

    u8bbeu8ba1u5e76u7528u78c1u63a7u6e85u5c04u65b9u6cd5u5236u5907u4e86u975eu6676Si/SiO2 u8d85 u6676u683c u7ed3u6784uff0cu4ee5u9ad8u7eafu591au6676Siu4e3au9776u6750uff0cu5f53u4ee5Ar+O2u4e3au6e85u5c04u6c14u6c1bu65f6uff0cu5f97u5230SiO2u819cuff0cu4ec5u4ee5Aru4e3au6c14u6c1bu65f6uff0cu5f97u5230Siu819cu3002

  • Study of the Donor Property in Superlattice Structure of Graded Changing Energy Gap

    u6e10u53d8u80fdu9699 u8d85 u6676u683c u7ed3u6784u4e2du7684u65bdu4e3bu6742u8d28u6027u8d28u7684u7814u7a76

  • Nonlinear Parabolic Potential and Stabilities of Bistable System for Superlattice Quantum Well Bi-stable Mechanical Behaviors of Double-layered Isotropic Shell Structure

    u975eu7ebfu6027u629bu7269u7ebfu52bfu4e0eu91cfu5b50 u9631u53ccu7a33u6001u7cfbu7edfu7684u7a33u5b9au6027u53ccu5c42 u58f3u7684u53ccu7a33u6001u529bu5b66u7279u6027u7406u8bbau5206u6790u548cu6570u503cu6a21u62df

  • Two-Dimensional Electron Gas Materials with AlN / GaN Superlattice Structure Grown by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy

    RF-MBEu751fu957fAlN/GaN u8d85 u6676u683c u7ed3u6784u4e8cu7ef4u7535u5b50u6c14u6750u6599

  • A well-defined superlattice structure was characterized by high-angle X-ray diffraction and the influence of NiFe buffer layer upon the orientation of crystalline growth was studied .

    u5229u7528Xu5c04u7ebfu884du5c04uff08XRDuff09u8868u5f81u4e86u81eau65cbu9600u591au5c42u819cu7684 u8d85 u6676u683c u7ed3u6784uff0cu7814u7a76u4e86NiFeu7f13u51b2u5c42u5bf9u81eau65cbu9600u751fu957fu53d6u5411u7684u5f71u54cdu3002

  • This paper discusses the advantages of superlattice semiconductor materials ( Multiple Quantum Well Structure ) in optical switching and optical computing .

    u672cu6587u8ba8u8bbau4e86 u8d85 u6676u683cu534au5bfcu4f53u6750u6599uff08u591au5c42u91cfu5b50u9631 u7ed3u6784uff09u5728u5149u5f00u5173u548cu5149u8ba1u7b97u4e2du5e94u7528u7684u4f18u8d8au6027u3002

  • The superlattice structure was optimized according to electron transport theory in heterostructure and the result of 3 u03c9 method .

    u6839u636eu7535u5b50u5728 u8d85u6676u683cu4e2du7684u8f93u8fd0u7406u8bbau53cau70edu5bfcu7387u5b9eu9a8cu7684u7ed3u8bbau5bf9 u8d85 u6676u683c u7ed3u6784u8fdbu884cu4f18u5316u3002

  • A New Electric-mechanical Coupled Study on Superlattice Structure in Semiconductors

    u4e00u79cdu65b0u578bu529bu7535u8026u5408 u8d85 u6676u683cu534au5bfcu4f53 u7ed3u6784u7814u7a76

  • The Ge_xSi_ ( 1-x ) / Si superlattice with 23 periods was grown by molecular beam epitaxy . The X-ray diffraction pattern was measured using a computer-controlled X-ray diffractometer with Cu K_a radiation . Interference peaks due to the superlattice structure were observed up to the 13th order .

    u7528u5206u5b50u675fu5916u5ef6u751fu957fu4e8623u5468u671fu7684GexSiuff081-xuff09/Siu8d85u6676u683cuff0cu7528u8ba1u7b97u673au63a7u5236u7684u884du5c04u4eeauff08CuKu03b1u8f90u5c04uff09u6d4bu91cfu4e86Xu5c04u7ebfu884du5c04u66f2u7ebfuff0cu5171u89c2u5bdfu523013u7ea7 u8d85 u6676u683c u7ed3u6784u7684u884du5c04u5cf0u3002

  • A superlattice structure was proposed in order to limit the vertical oxidation .

    u6211u4eecu63d0u51fau4e86 u8d85 u6676u683c u7684 u7ed3u6784u6765u9650u5236u7eb5u5411u6c27u5316u3002

  • In this thesis we have investigated the transport and optical properties in LD semiconductor driven by THz radiation and explored the THz oscillator based on superlattice and resonant tunneling structure ( RTS ) .

    u672cu8bbau6587u7814u7a76u4e86u4f4eu7ef4u534au5bfcu4f53u5728THzu573au4f5cu7528u4e0bu7684u5b50 u5e26 u95f4u8f93u8fd0u548cu5149u5b66u7279u6027uff0cu5e76u63a2u7d22u4e86u57fau4e8eu5171u632fu96a7u7a7fu7ed3u548c u8d85 u6676u683c u7ed3u6784u7684THzu632fu8361u6e90u3002

  • The superlattice was characterized with X ray diffraction and the TEM and its micro parameters were investigated through Fourier X ray profile analysis . The cross section TEM images indicated that there was columnar structure in the superlattice .

    u901au8fc7Xu5c04u7ebfu884du5c04u548cu7535u955cu624bu6bb5u5bf9u5176u8fdbu884cu6d4bu8bd5uff0cu5229u7528Xu5c04u7ebfu5085u6c0fu7ebfu5f62u5206u6790u6cd5u5bf9u8d85 u6676u683cu7684u5faeu89c2u53c2u6570u8fdbu884cu8868u5f81uff0cu901au8fc7TEMu5bf9u8d85u6676u683cu7684u622au9762u5f62u8c8cu8fdbu884cu89c2u5bdfuff0cu53d1u73b0u5176u5177u6709u67f1u72b6u751fu957f u7ed3u6784u3002

  • Measurement of One-Dimensional MBE ( Al_xGa_ ( 1-x ) As ) _1 ( GaAs ) _m w_1577 _n / GaAs ( 001 ) Superlattice Structure Parameters by X-Ray Double Crystal Diffractometry

    MBEuff08AIxGauff081-xuff09Asuff09luff08GaAsuff09mw_1605n/GaAsuff08001uff09 u8d85 u6676u683c u7ed3u6784u53c2u6570u7684Xu5c04u7ebfu53ccu6676u884du5c04u6d4bu91cfu7814u7a76

  • The electron diffraction patterns show that the over-stoichiometric Li forms superlattice structure . Residual Ti atoms act as pins in the lattice .

    u7535u5b50u884du5c04u82b1u6837u8868u660eu8fc7u91cfTiu5f62u6210u4e86 u8d85 u70b9u9635uff0cTiu5728u70b9u9635u4e2du5f62u6210u9489u624eu3002

  • The superlattice coatings are an alternate multilayer structure under nanometer scale . The period thickness is 5-10 nanometer .

    u8d85 u6676u683cu6d82u5c42u662fu7eb3u7c73u5c3au5ea6u4e0bu4e24u79cd u4e0du540c u5c42u4ee5 u8d85 u6676u683cu5468u671fu5c42 u95f4u4ea4u66ffu5f62u6210u7684u591au5c42 u7ed3u6784uff0cu5c42u95f4u539au5ea6u57285&10u7eb3u7c73u3002

  • The Fibonacci superlattice is a type of the superlattices with quasiperiodic potential field . In the quasiperiodic structure the Bloch theorem has become invalid .

    u8d39u6ce2u90a3u5947uff08Fibonacciuff09 u8d85 u6676u683cu662fu4e00u79cdu5177u6709u51c6u5468u671fu6027 u7ed3u6784u7684u8d85u6676u683cuff0cBlochu5b9au7406u5bf9u6b64 u7ed3u6784u4e0du9002u7528u3002