superposition integral

[ˌsjupəpəˈzɪʃən ˈɪntɪɡrəl][ˌsju:pəpəˈziʃən ˈintiɡrəl]

重叠积分

  • By using the principle of superposition and Fourier transform the singular integral equations are derived . There are some pole points in the integral path an integral path in the complex plane consisting of four straight lines is adopted .

    u5229u7528 u53e0u52a0u539fu7406u548cu79efu5206u53d8u6362u65b9u6cd5u5c06u95eeu9898u8f6cu5316u4e3au4e00u7ec4u5947u5f02 u79efu5206u65b9u7a0buff0cu79efu5206u8defu5f84u6709u6781u70b9uff0cu91c7u53d6u4e86u504fu79fbu8defu5f84u65b9u6cd5u907fu5f00u79efu5206u8defu5f84u4e0au7684u6781u70b9u3002

  • Based on transform of coordinate and principle of superposition a generalized Duhamel u2032 s integral formula dealing with moving load problem is established .

    u57fau4e8e u7ebfu6027u7cfbu7edfu7684 u53e0u52a0u539fu7406u548cu5750u6807u53d8u6362uff0cu5efau7acbu4e86u6c42u89e3u8fd0u52a8u8377u8f7du4f5cu7528u4e0bu677fu7684u52a8u529bu54cdu5e94u7684u5e7fu4e49Duhamel u79efu5206u516cu5f0fuff0cu628au8fd0u52a8u8377u8f7du95eeu9898u8f6cu5316u4e3au83b7u53d6u4f4du79fbu8109u51b2u54cdu5e94u51fdu6570u3002

  • The finite element method and the superposition integral method for computing dynamic stress intensity factors of thick walled cylinder

    u8ba1u7b97u5706u7b52u52a8u6001u5e94u529bu5f3au5ea6u56e0u5b50u7684u6709u9650u5143u65b9u6cd5u4e0e u53e0u52a0 u79efu5206u65b9u6cd5

  • The Linear System Analyses by Superposition Integral of Singular Response

    u7ebfu6027u7cfbu7edfu7684u5947u5f02u54cdu5e94 u8fedu52a0 u79efu5206u5206u6790u6cd5

  • In this paper sufficient condition for absolute stability of time varying control system with superposition of nonlinear elements using the quadratic Liapunov function with integral terms have been given .

    u7528u4e8cu6b21u578bu52a0 u79efu5206u9879u5f62u5f0fu7684Liapunovu51fdu6570u7814u7a76u5177u6709 u91cdu53e0u975eu7ebfu6027u5143u7d20u7684u65f6u53d8u63a7u5236u7cfbu7edfu7684u7eddu5bf9u7a33u5b9au6027uff0cu7ed9u51fau4e86u7cfbu7edfu7eddu5bf9u7a33u5b9au7684u5145u5206u6761u4ef6u3002

  • In this paper three solving formulae of mixed problems about heat conduction equations on ray are obtained under . The third second and first boundary conditions by using superposition principle extension method Homogenization principle and Fourier integral transformation as means .

    u672cu6587u4ee5 u8fedu52a0u539fu7406u3001u5f00u62d3u6cd5u3001u9f50u6b21u5316u539fu7406u53cau5085u91ccu53f6 u79efu5206u53d8u6362u4e3au5de5u5177u6c42u5f97u4e86u534au76f4u7ebfu4e0au7b2cu4e09u7c7bu3001u7b2cu4e8cu7c7bu53cau7b2cu4e00u7c7bu8fb9u754cu6761u4ef6u4e0bu70edu4f20u5bfcu65b9u7a0bu6df7u5408u95eeu9898u7684u4e09u4e2au6c42u89e3u516cu5f0fu3002

  • The accuracy of the superposition integral method is proved theoretically and numerically .

    u7406u8bbau548cu8ba1u7b97u90fdu8bc1u660eu4e86u8fd9 u4e24u79cd u8fedu52a0 u79efu5206u6cd5u7684u7cbeu5ea6u3002

  • Antiplane problems considered by means of superposition were separated into a uniform field and an auxiliary field which can be determined by solving resulting boundary value problem with the help of the solutions of dual integral equations .

    u7528 u53e0u52a0 u539fu7406uff0cu5c06u8981u8ba8u8bbau7684u53cdu5e73u9762u95eeu9898u5206u89e3u4e3au5747u5300u573au548cu8f85u52a9u573au7684 u53e0u52a0uff0cu800cu8f85u52a9 u573au95eeu9898u53efu4ee5u501fu52a9u4e8eu5bf9u5076 u79efu5206u65b9u7a0bu6c42u89e3u4e0eu5176u76f8u5e94u7684u8fb9u503cu95eeu9898u3002

  • Considering superposition of incidence infrared waves integral methods were used to obtain the optimum thickness ( 2 ~ 5nm ) of PtSi thin films within 3-5 u m wavelength which is the result reported for the first time .

    u8003u8651u5165u5c04u7ea2u5916u6ce2u7684 u53e0u52a0uff0cu91c7u7528 u79efu5206u65b9u6cd5uff0cu9996u6b21u5f97u5230u7528u4e8e3uff5e5u03bcmu6ce2u957fu8303u56f4PtSiu8584u819cu539au5ea6u6700u4f73u503cu662f2uff5e5nmu3002

  • Mode Superposition Method and Duhamel Integral Numeral Solution

    u632f u5f62 u53e0 u52a0u6cd5u4e0eDuhamel u79efu5206u6570u503cu89e3

  • The multiple-edge crack problem of half-plane can be considered as a superposition of many single-edge crack problems . Thus a group of Cauchy singular integral equations can be formulated where the distributing dislocation density serves as the unknown function .

    u5c06u534au5e73u9762u591au8fb9u7f18u88c2u7eb9u95eeu9898u770bu4f5cu662fu8bb8u591au5355u8fb9u7f18u88c2u7eb9u95eeu9898u7684 u53e0u52a0uff0cu5efau7acbu4e86u4ee5u5206u5e03u4f4du9519u5bc6u5ea6u4e3au672au77e5u51fdu6570u7684Cauchyu578bu5947u5f02 u79efu5206u65b9u7a0bu7ec4u3002

  • A Algebraic Method of Computing superposition Integral

    u8ba1u7b97 u91cd u79efu5206u7684u4e00u79cdu4ee3u6570u65b9u6cd5

  • Tai is adopted and then combining the scatter superposition theorem the analytic formulation for the electric dyadic green function of the second kind is derived which is necessary for the analysis to construct the magnetic field integral equations ( MFIE ) .

    Tu63d0u51fau7684Gmu65b9u6cd5uff0cu7ed3u5408u6563u5c04 u53e0 u52a0u6cd5uff0cu63a8u5bfcu51fau4e86u672cu6587u6240u9700u7684u7b2cu4e8cu7c7bu7535u578bu5e76u77e2u683cu6797u51fdu6570u663eu5f0fu8868u8fbeu5f0fuff0cu5efau7acbu78c1u573a u79efu5206u65b9u7a0buff08MFIEuff09u3002

  • Some Relationships of the Three Superposition Integral Formulas in the Special Function Response Methods

    u7279u6b8au51fdu6570u54cdu5e94u6cd5u4e2du7684u4e09u4e2a u53e0u52a0 u79efu5206u5f0fu95f4u7684u8054u7cfb

  • A set of formulas for calculating the approximate values of the convolution and superposition integral is given .

    u5c06u6b64u5e94u7528u5230u5377u79efu79efu5206uff0cu4eceu800cu5f97u5230u4e86u4e00u7ec4u6c42u89e3u5377u79efu79efu5206u3001 u8fedu52a0 u79efu5206u7684u8fd1u4f3cu8ba1u7b97u516cu5f0fu3002

  • Both two-dimensional and three-dimensional analysis is performed to prove the feasibility and the precision of the superposition integral method used in calculating the stress intensity factor .

    u540cu65f6u672cu6587u5206u6790u4e86 u8fedu52a0 u79efu5206u6cd5u5e94u7528u4e8e u7ebf u5f39u6027 u52a8u6001u5e94u529bu5f3au5ea6u56e0u5b50u8ba1u7b97u7684u53efu884cu6027u4e0eu7cbeu5ea6uff0cu5e76u5efau8baeu7528u4e8eu5b9eu9a8cu6570u636eu7684u5904u7406u4e2du3002