supervised learning

有监督的学习

  • Meanwhile covering algorithm is a supervised learning algorithm which requires a lot of labeled examples .

    u540cu65f6u8986u76d6u7b97u6cd5u662fu4e00u4e2a u76d1u7763 u5b66u4e60uff0cu9700u8981u5927u91cfu7684u6709u6807u8bb0u6570u636eu3002

  • A series of formulation and a supervised learning algorithm of multi-views subspace analysis were investigated and obtained .

    u7ed9u51fau4e86ISAu89c6u89d2u5b50u7a7au95f4u5206u6790u516cu5f0fu548cu6709u6548u7684u591au89c6u89d2u5b50u7a7au95f4 u6709 u76d1u7763 u5b66u4e60u7b97u6cd5u3002

  • This paper proposes a method combining supervised learning with unsupervised method to conduct CWS which incorporates unsupervised segmentation into Conditional Random Fields ( CRFs ) .

    u8be5u6587u63d0u51fau4e00u4e2au57fau4e8eu6761u4ef6u968fu673au573auff08CRFuff09u7684u53e4u6c49u8bedu81eau52a8 u65adu53e5 u6807u70b9u65b9u6cd5uff0cu5e76u5f15u5165u4e92u4fe1u606fu548ctu6d4b-u8bd5u5deeu4e24u4e2au7edfu8ba1u91cfu4f5cu4e3au6a21u578bu7684u7279u5f81u3002

  • The system adopts supervised learning Naive Bayes as the categorization model and information gain as the feature selection .

    u7cfbu7edfu91c7u7528 u6709 u6307u5bfc u7684 u5b66u4e60u65b9u6cd5uff0cu9009u53d6NaiveBayesu4f5cu5206u7c7bu6a21u578bu548cu4fe1u606fu589eu76cau4f5cu4e3au7279u5f81u63d0u53d6u65b9u6cd5u3002

  • And raises a combined method which combines supervised learning method and semi-supervised learning method to drug name recognition .

    u672cu6587u63d0u51fau4e86u4e00u79cd u76d1u7763 u5b66u4e60u548cu534au76d1u7763u5b66u4e60u76f8u7ed3u5408u7684u65b9u6cd5u8fdbu884cu547du540du5b9eu4f53u8bc6u522bu3002

  • DSPE is a linear supervised learning method which can extract features effectively and has good robustness .

    u8be5u65b9u6cd5u662fu4e00u4e2au7ebfu6027u7684 u76d1u7763 u7b97u6cd5uff0cu80fdu591fu6709u6548u5730u63d0u53d6u7279u5f81uff0cu5177u6709u8f83u9ad8u7684u9c81u68d2u6027u3002

  • Because of using the known model to predict new data Classification is a favourable supervised learning process .

    u7531u4e8eu5206u7c7bu662fu5229u7528u5df2u77e5u7684u6a21u578bu5bf9u65b0u7684u6570u636eu8fdbu884cu9884u6d4buff0cu56e0u6b64u5b83u662fu4e00u4e2au5f88u597du7684 u6709 u76d1u7763 u7684 u5b66u4e60u8fc7u7a0bu3002

  • Compared with traditional supervised learning and unsupervised learning semi-supervised learning is in a rather new field .

    u76eeu524du5728u673au5668u5b66u4e60u754cuff0cu4e3bu8981u8fd8u662fu4f20u7edfu7684 u76d1u7763 u5b66u4e60u548cu975eu76d1u7763u5b66u4e60u4e24u5927u7c7bu522buff0cu534au76d1u7763u5b66u4e60u8fd8u5c5eu4e8eu4e00u4e2au6bd4u8f83u65b0u9896u7684u9886u57dfu3002

  • Comparing with the supervised learning it saves the cost of tagging samples .

    u76f8u6bd4u8f83u4e8e u76d1u7763 u5b66u4e60 u7b97u6cd5uff0cu5b83u8282u7701u4e86u6807u6ce8u6837u672cu6240u9700u8981u7684u5927u91cfu6210u672cuff0cu76f8u6bd4u8f83u4e8e u65e0 u76d1u7763u6765u8bf4uff0cu5b83u4fddu8bc1u4e86 u51c6u786eu5ea6u3002

  • At present text categorization based on supervised learning is a mature technology to solve the problem .

    u76eeu524duff0cu89e3u51b3u6b64u95eeu9898 u8f83u4e3au6210u719fu7684u6280u672fu662f u6709 u76d1u7763u7684u6587u672cu5206u7c7bu6280u672fu3002

  • Compared to supervised learning unsupervised learning of a late start has greater space for its research .

    u76f8u5bf9u4e8e u6709 u76d1u7763 u5b66u4e60u6765u8bf4uff0cu975eu76d1u7763u5b66u4e60u7684u7814u7a76u8d77u6b65u8f83u665auff0cu5176u7814u7a76u7a7au95f4u6bd4u524du8005u66f4u5927u3002

  • Other feedforward models and supervised learning models .

    u5176u5b83u524du9988u578bu7f51u7edcu6a21u578bu548c u76d1u7763 u5b66u4e60u6a21u578buff1b

  • In order to develop linear local tangent space alignment to supervised learning algorithm an algorithm called orthogonal discriminant linear local tangent space alignment is proposed .

    u4e3au4e86u5c06u7ebfu6027u5c40u90e8u5207u7a7au95f4u6392u5217u7b97u6cd5u53d1u5c55u4e3a u6709 u76d1u7763 u7684 u5b66u4e60u7b97u6cd5uff0cu63d0u51fau4e86u4e00u79cdu6b63u4ea4u5224u522bu7684u7ebfu6027u5c40u90e8u5207u7a7au95f4u6392u5217u7b97u6cd5u3002

  • After supervised learning the visual network can extract image features and classify patterns .

    u7ecfu8fc7 u5b66u4e60u7684u89c6u89c9u6a21u5f0fu8bc6u522bu7f51u7edcuff0cu53efu5b8cu6210u56feu50cfu7279u5f81u7684u63d0u53d6uff0cu5b9eu73b0 u76f8u5bf9u4e8eu56feu50cf u5e73u79fbu548cu5c3au5ea6u4e0du53d8u7684u6a21u5f0fu8bc6u522bu3002

  • A new hybrid supervised learning control scheme is presented for continuous stirred tank reactor ( CSTR ) systems .

    u63d0u51fau4e86u4e00u79cdu8fdeu7eedu6405u62ccu53cdu5e94u91dcuff08CSTRuff09u7684u6df7u5408 u76d1u7763 u5b66u4e60u63a7u5236u65b9u6cd5u3002

  • Decomposition of SAR images ' mixed pixels based on supervised learning ICA algorithm

    u57fau4e8e SL-ICAu7b97u6cd5u7684SARu56feu50cfu6df7u5408u50cfu5143u5206u89e3

  • Propose a new ensemble supervised learning algorithm following by feature selection that is suitable for high dimensional data .

    u63d0u51fau4e86u4e00u79cdu65b0u7684u9002u4e8eu9ad8u7ef4u6570u636eu7684 u6709 u76d1u7763u7684u7279u5f81u9009u62e9u96c6u6210 u5b66u4e60u7b97u6cd5u3002

  • Constrained clustering and transductive learning mainly deal with learning problems between unsupervised learning and supervised learning .

    u7ea6u675fu805au7c7bu548cu7ea6u675fu5206u7c7bu4e3bu8981u5904u7406u5b66u4e60u95eeu9898u7684u65b9u5f0fu95f4u4e8eu65e0u76d1u7763u5b66u4e60u548c u76d1u7763 u5b66u4e60u3002

  • Common examples of supervised learning include classifying e-mail messages as spam labeling Web pages according to their genre and recognizing handwriting .

    u76d1u7ba1 u5b66u4e60u7684u5e38u89c1u4f8bu5b50u5305u62ecu5c06u7535u5b50u90aeu4ef6u6d88u606fu5206u7c7bu4e3au5783u573eu90aeu4ef6uff0cu6839u636eu7c7bu522bu6807u8bb0u7f51u9875uff0cu4ee5u53cau8bc6u522bu624bu5199u8f93u5165u3002

  • An 3D Expression Generating Method Based on Morphing and Supervised Learning

    u4e00u79cdu57fau4e8eu53d8u5f62u548c u76d1u7763 u5f0f u5b66u4e60u7684u4e09u7ef4u8868u60c5u751fu6210u65b9u6cd5

  • In Multi-Agent Systems supervised learning algorithms are widely used such as the Artificial Neuron Network and Decision Tree .

    u5176u4e2duff0c u6709 u65bdu6559 u8005 u7684 u5b66u4e60u7b97u6cd5u5728u591aAgentu7cfbu7edfu4e2du5e94u7528u6700u4e3au666eu904duff0cu6bd4u5982u4ebau5de5u795eu7ecfu7f51u7edcu7b97u6cd5u548cu51b3u7b56u6811u7b97u6cd5u7b49u3002

  • Semi-supervised learning flourishes as it can circumvent the limitations of unsupervised learning and supervised learning .

    u534au76d1u7763u5b66u4e60u7684u84ecu52c3u53d1u5c55u89c4u907fu4e86u65e0u76d1u7763u5b66u4e60u548c u76d1u7763 u5b66u4e60u7684u5c40u9650u6027u3002

  • Supervised learning with the use of regression and classification networks with sparse data sets will be explored .

    u4e5fu5c06u5728 u8bfeu7a0bu4e2du4ee5u5e26u6709u7a00u758fu503cu7406u8bbau7684u5206u7c7bu795eu7ecfu7f51u8defu4e0eu56deu5f52u7684u4f7fu7528u6765u63a2u8ba8 u76d1u7763 u5f0f u5b66u4e60u3002

  • Supervised learning is tasked with learning a function from labeled training data in order to predict the value of any valid input .

    u76d1u7ba1 u5b66u4e60u7684u4efbu52a1u662fu5b66u4e60u5e26u6807u7b7eu7684u8badu7ec3u6570u636eu7684u529fu80fduff0cu4ee5u4fbfu9884u6d4bu4efbu4f55u6709u6548u8f93u5165u7684u503cu3002

  • In this thesis first of all the importance of supervised learning for feature extraction is discussed .

    u672cu6587u9996u5148u8ba8u8bbau4e86 u76d1u7763 u5b66u4e60u5728u7279u5f81u63d0u53d6u4e0au7684u91cdu8981u6027u3002

  • A supervised learning evidence theory classifier is proposed to solve this problem .

    u901au8fc7u5728u8bc1u636eu7406u8bbau4e2du5f15u5165u795eu7ecfu7f51u7edcu7684u5b66u4e60u673au5236uff0cu8be5u6587u63d0u51fau4e86u4e00u79cd u6709 u76d1u7763 u5b66u4e60u8bc1u636eu7406u8bbau5206u7c7bu5668u3002

  • Lattice machine is a novel approach to supervised learning .

    u683cu673au662fu4e00u79cdu65b0u9896u7684 u6709 u76d1u7763 u5b66u4e60u65b9u6cd5u3002

  • Different kinds of Gaussian process classification methods compared with the traditional supervised learning .

    u540cu65f6uff0cu8fd8u5bf9u4e0du540cu79cdu9ad8u65afu8fc7u7a0bu5206u7c7bu65b9u6cd5u4e0eu4e09u79cdu7ecfu5178u7684 u76d1u7763 u5f0f u5b66u4e60u65b9u6cd5u8fdbu884cu5206u7c7bu68c0u6d4bu5bf9u6bd4u5b9eu9a8cu3002

  • Unsupervised learning is used to adjust input weight values and supervised learning is utilized to adjust output weight values .

    u5b66u4e60u8fc7u7a0bu4e2duff0cu91c7u7528u65e0u76d1u7763u5b66u4e60u7b97u6cd5u5bf9u8f93u5165u6743u91cdu8fdbu884cu8c03u6574uff0cu91c7u7528 u6709 u76d1u7763 u5b66u4e60u7b97u6cd5u5bf9u8f93u51fau6743u91cdu8fdbu884cu8c03u6574u3002

  • A decade ago it was thought that supervised learning was the way to do this : A team of linguists created dictionaries and grammar rules and taught them to the computer .

    u5341u5e74u524duff0cu4ebau4eecu8ba4u4e3a u76d1u7763 u5f0f u5b66u4e60u662fu5b9eu73b0u5b83u7684u65b9u6cd5uff1au4e00u7ec4u8bedu8a00u5b66u5bb6u9020u51fau5b57u5178uff0cu8bedu6cd5u89c4u5219uff0cu7136u540euff0cu628au5b83u4eecu6559u7ed9u8ba1u7b97u673au3002