When writing a program to play a two-person zero-sum game with perfect information .
在编写完全信息 二 人零和 博弈 游戏程序时。
Optimal Stopping and the Two-person Zero-sum Game on the Parking Problem
关于停车问题的最优停时与 两 人零和 对策
In this paper we consider a two-person zero-sum game model with payoff to be an interval number or a fuzzy number due to the uncertainty of the market .
本文考察营销中一个 两 人零和 对策模型。由于市场的不确定性,其支付为区间数或模糊数。
On a zero sum two-person continuous game this paper introduces the concepts of judgement judgement block set of optimal strategies under a judgement and so on .
引进了 二 人 零和连续 对策上的判断,判断块以及在判断下的最优策略等概念。
Two solution methods regarding vague multi-objective two-person zero-sum matrix game are discussed : one is making the vague multi-objective game problem certain through the order function of vague values first then turning it into single objective game ;
讨论了Vague多目标 二 人零和矩阵 对策的两种求解方法:一是先将Vague多目标对策问题清晰化,再转化为单目标对策问题求解;
Then the problem is formulated as a two-person zero-sum game and the method of the problems solution is given .
将此问题归结为一个 二 人零和 对策问题,并给出利用对策论求解的方法。
The two coexisting modes of dispatching i.e. the centralized dispatching in the power pool transaction mode and the dispersed dispatching in the bilateral transaction mode are researched and analyzed by the theory and method of two-person cooperative game and its bargaining model is put forward .
用 二 人 对策的理论和方法对同时存在集中调度的电力联营市场(Power Pool)和分散调度的双边合同型交易的两种模式进行了研究分析,并提出了定价方式。
Linear Programming Solution of the Two-Person Finite Zero-sum Game as well as the Realization of the Spreadsheet Method
二 人有限零和 对策的线性规划求解及Spreadsheet方法实现
Preliminary Discussion about a New Solution for Finite Two-person Zero-sum Game
两 人有限零和 对策的新解法初探
The Nash equilibrium of fuzzy two-person zero-sum game is investigated by the Choquet integral .
研究模糊博弈环境下如何确定 两 人零和模糊 博弈的均衡策略问题。
Weapon Assignment of Air-Defense Operation Based on Two-Person Finite Zero-Sum Game
基于 二 人有限零和 对策的防空兵火力分配方法
By use of game theory in the paper the problem about the supervision and administration of Internet information resource is analysed and establishes two two-person static game models among ICP customer and government are established .
从博弈论角度分析了对互联网信息资源的监督管理问题,在政府、ICP和信息消费者之间建立了两个 完全信息静态 博弈模型。
It is common knowledge that a zero sum two-person finite game is also called matrix game .
众所周知,零和 二 人有限 对策也称为矩阵对策。
Based on theories of multi-objective decision making and fuzzy game the multi-objective two-person zero-sum matrix game whose payoff value is a vague value is studied .
根据多目标决策和模糊对策理论,研究支付值为Vague值的多目标 二 人零和矩阵 对策。
The insurance process is characterized by the game of two-person zero-sum for the first time : The existence of the optimal value of premium in the model and how to obtain the optimal value are analyzed in detail based on the game theories .
将对策理论应用于保险实践中,投保过程可以由 二 人零和对策来描述,应用 二 人零和 对策理论讨论模型中保险费的最优值存在性及如何得到保险费的最优解。
This paper will discuss the relationship of dominant optimal and reliable strategy compare the magnitude of payoffs selected respectively by minimax principle and maximin method in two-person constant-sum game and explain that a profile of reliable strategies is not surely the Nash equilibrium through some examples .
讨论了 二 人常和 博弈中的占优策略、最优策略与稳妥策略的关系,比较最小最大原理和最大最小法分别选取的支付大小,通过例子说明稳妥策略组合不一定是纳什均衡;
Finally the optimal pure strategies for each player can be found directly by the use of two-person finite zero-sum matrix game theory .
最后根据 二 人有限零和矩阵 博弈理论,直接求两机的最优纯策略。
A special two-person zero-sum finite game in which every player has a warning level of the gain and loss is posed . It is said to be the Matrix B-Game .
提出了一类 局中人都设定有得失控制值的 二 人零和有限 对策,即B矩阵对策。
The two-person finite zero-sum game is a basic problem in game theory . This paper demonstrates the feasibility of linear programming method in the solution of the problem by using related theorems in linear programming and game theory and Spreadsheet method . Concrete computer-based solutions are given .
二 人有限零和 对策问题是对策论问题中最基本的一种,论文利用线性规划和对策论的相关定理,证明了线性规划求解该对策的可行性,并结合Spreadsheet方法给出使用计算机具体求解方法。
Consistency of Saddle Point and Nash Equilibrium in Two-Person Constant-Sum Game
二 人常和 博弈中的鞍点与纳什均衡的一致性
In the view of the Game Theory the counterwork of aviation and submarine is a two-person zero-sum game .
从对 策论的角度看,航空兵与潜艇的对抗实质是一种 二 人 有限零和对弃。
A two-person teamwork is taken as an example to establish a game model concerning individual 's effort degree and cooperation degree under certain allocation rules . Nash equilibrium of this game is studied .
在此 基础上,以 二 人合作 博弈为例,建立了一个有关个人努力程度和合作程度以及在一定分配模式下团队成员间合作问题的 博弈模型,研究了该博弈的Nash均衡问题。
Moreover this paper also studies the two-person zero-sum game and obtains the equilibrium solu-don of it .
另外,本文还研究了关于停车问题的 两 人零和 对策,得到了该对策的平衡解。
美[tu ˈpɜːrsn ɡem]英[tu: ˈpɜːsn ɡeim]
双人博弈二人博奕两人对策