subset algorithm

[ˈsʌbˌsɛt ˈælɡəˌrɪðəm][ˈsʌbset ˈælɡəriðəm]

[计] 子集算法

  • Incremental Feature Subset Selection Algorithm Based on Extension Matrices

    u57fau4e8eu6269u5f20u77e9u9635u7684u6e10u8fdbu5f0fu7279u5f81 u5b50u96c6u9009u62e9 u7b97u6cd5

  • In addition this paper also analyses the methods determining the size of the optimal feature subset and proposes a feature subset size determination algorithm based on training accuracy .

    u6b64u5916uff0cu672cu6587u8fd8u5bf9u786eu5b9au6700u4f18u7279u5f81u5b50u96c6u5927u5c0fu7684u65b9u6cd5u8fdbu884cu7814u7a76uff0cu7ed9u51fau4e86u4e00u79cdu57fau4e8eu8badu7ec3u51c6u786eu7387u7684u7279u5f81 u5b50u96c6u5927u5c0fu786eu5b9a u7b97u6cd5u3002

  • An algorithm of feature subset selection based on genetic algorithm

    u57fau4e8eu9057u4f20 u7b97u6cd5u7684u7279u5f81 u5b50u96c6u9009u62e9u65b9u6cd5

  • Theoretical and practical computation show that the optimal approximation results can be obtained using the suboptimal subset regression algorithm proposed by the paper for any given precision .

    u7406u8bbau5206u6790u548cu5b9eu9645u8ba1u7b97u53d1u73b0uff0cu5229u7528u672cu6587u63d0u51fau7684u4feeu6b63u6b21u4f18 u5b50u96c6u56deu5f52 u6cd5u5bf9u7ed9u5b9au7684u4efbu610fu7cbeu5ea6u90fdu53efu6c42u51fau6700u4f73u903cu8fd1u7ed3u679cu3002

  • In order to materialize an appropriate cube subset a heuristic genetic algorithm was proposed .

    u4e3au4e86u5b9eu4f53u5316u4e00u4e2au5408u9002u7684u7acbu65b9u4f53 u5b50u96c6uff0cu901au8fc7u4ecbu7ecdu542fu53d1u7b56u7565uff0cu63d0u51fau4e86u7acbu65b9u4f53u5b9eu4f53u5316u7684u542fu53d1u5f0fu9057u4f20 u7b97u6cd5u3002

  • Therefore this paper proposes a k-connected and 1-covered node subset construction algorithm & CPC which can construct a node subset that is covering and k-connected with few nodes .

    u56e0u6b64uff0cu672cu6587u63d0u51fau4e86u4e00u4e2au6784u9020ku8fdeu901a1u8986u76d6u8282u70b9 u5b50u96c6 u7684 u7b97u6cd5&CPCuff0cu80fdu591fu7528u8f83u5c11u7684u8282u70b9u6784u9020u4e00u4e2au65e2u80fdu6ee1u8db3u7f51u7edcu7684u8986u76d6u7279u6027u53c8u80fdu591fu6ee1u8db3k-u8fdeu901au7279u6027u7684u8282u70b9u5b50u96c6u3002

  • This paper proposed a criterion function for selecting the optimal feature subset and a search strategy called novel quantum genetic algorithm ( NQGA ) .

    u63d0u51fau4e00u79cdu6700u4f18u7279u5f81 u5b50u96c6u8bc4u4ef7u51c6u5219u548cu5b9eu73b0u7279u5f81u9009u62e9u7684u4e00u79cdu65b0u91cfu5b50u9057u4f20 u7b97u6cd5uff08NQGAuff09u3002

  • In view of the deficiencies in traditional combination optimization method an algorithm of feature subset selection based on genetic algorithm is proposed in this paper .

    u8be5u6587u9488u5bf9u4f20u7edfu4f18u5316u65b9u6cd5u7528u4e8eu7279u5f81u9009u62e9u7684u79cdu79cdu7f3au9677uff0cu63d0u51fau4e86u57fau4e8eu9057u4f20 u7b97u6cd5 u7684 u7279u5f81 u5b50u96c6u9009u62e9 u6d4bu7b97u6cd5u3002

  • After analyzing problems of the feature subset selection in the field of data mining a new algorithm of feature subset selection based on the improved genetic algorithm is proposed .

    u5bf9u6570u636eu6316u6398u4e2du7684u7279u5f81u5b50u96c6u9009u62e9u95eeu9898u8fdbu884cu5206u6790uff0cu63d0u51fau4e86u57fau4e8eu6539u8fdbu9057u4f20 u7b97u6cd5u7684u7279u5f81 u5b50u96c6u9009u62e9u7b97u6cd5u3002

  • Subset Search algorithm based on Hybrid PSO and GA ( HPSOGA ) for hyperspectral data .

    u57fau4e8e u5b50u96c6u641cu7d22 u7b97u6cd5u7684u9ad8u5149u8c31u6570u636eu7279u5f81u9009u62e9&u7c92u5b50u7fa4u4f18u5316u4e0eu9057u4f20u7b97u6cd5u6df7u5408u5b50u96c6u641cu7d22u7b97u6cd5u5229u7528u8fdbu5316u7b97u6cd5u81eau9002u5e94u968fu673au641cu7d22u7684u7279u6027uff0cu63d0u51fau4e86u4e00u79cdu7c92u5b50u7fa4u4f18u5316u4e0eu9057u4f20u7b97u6cd5u6df7u5408u7684 u5b50u96c6u641cu7d22u7b97u6cd5u3002

  • The basic algorithm for feature subset select which use genetic algorithm and immune genetic algorithm are analyzed . Simulation shows that this algorithm is validity and feasibility .

    u5206u6790u4e86u9057u4f20 u7b97u6cd5u548cu6df7u5408u9057u4f20u7b97u6cd5u7528u4e8eu7279u5f81 u5b50u96c6u9009u62e9u7684u57fau672cu7b97u6cd5uff0cu4effu771fu5b9eu9a8cu8bf4u660eu4e86u6df7u5408u4f18u5316u7b97u6cd5u7684u6709u6548u6027u548cu53efu884cu6027u3002

  • Eigenvector Subset Selection Using Bayesian Optimization Algorithm

    u57fau4e8eu8d1du53f6u65afu4f18u5316 u7b97u6cd5u7684u8138u9762u7279u5f81u5411u91cfu5b50 u96c6u9009u62e9

  • The efficiency of algorithm is enhanced by setting up intersection subset of these two in the previous algorithm .

    u5efau7acbu6b64u4e24u8005u6c42u4ea4u8ba1u7b97u7684u6c42 u4ea4u5b50 u96c6uff0cu51cfu5c11u4ee5u5f80 u7b97u6cd5u4e2du4e0d u5fc5u8981u7684u6c42u4ea4u8ba1u7b97uff0cu63d0u9ad8u7b97u6cd5u7684u6548u7387u3002

  • Therefore the main research direction of attribute reduction focus on the more effective attribute reduction algorithm the optimal feature subset reduce the time complexity algorithm and improve the accuracy of the optimal .

    u56e0u6b64uff0cu7814u7a76u66f4u4e3au6709u6548u7684u5c5eu6027u7ea6u7b80u7b97u6cd5uff0cu6709u6548u5730u83b7u53d6u6700u4f18u7279 u5f81 u5b50u96c6uff0cu964du4f4e u7b97u6cd5u7684u65f6u95f4u590du6742u5ea6uff0cu63d0u9ad8u5bfbu4f18u7684u51c6u786eu6027uff0cu4ecdu7136u662fu7c97u7cd9u96c6u5c5eu6027u7ea6u7b80u7406u8bbau7684u4e3bu8981u7814u7a76u65b9u5411u3002

  • The simulation results show that the nodes in every subset brought by the new algorithm are uniformly distributed and analysis shows that the new algorithm can work with a very low time complexity and message complexity so it has a great practicability .

    u4effu771fu7ed3u679cu8868u660euff0cu7ecfu65b0 u7b97u6cd5u5904u7406u4e4bu540euff0cu6bcfu4e2a u5b50 u96c6u4e2du7684u8282u70b9u5448u73b0u5747u5300u5206u5e03uff1bu5206u6790u8868u660euff0cu65b0u7b97u6cd5u5177u6709u6781u4f4eu7684u65f6u95f4u590du6742u5ea6u548cu6d88u606fu590du6742u5ea6uff0cu5177u6709u5f88u597du7684u5b9eu7528u6027u3002

  • Study on the Image Reconstruction Subset Sort of OSEM Algorithm

    OSEM u7b97u6cd5u5728u56feu50cfu91cdu5efau4e2du5b50 u96c6u5206u7c7bu7684u7814u7a76

  • A New Entropy-Based Feature Subset Selection Algorithm

    u4e00u79cdu65b0u7684u57fau4e8eu4fe1u606fu71b5u7684u5c5eu6027 u9009u62e9 u7b97u6cd5

  • Control Flow Paths Subset of Tested Program Generation Algorithm Based on LCC

    u57fau4e8eLCCu7684u6d4bu8bd5u7a0bu5e8fu63a7u5236u6d41u8defu5f84 u5b50u96c6u751fu6210 u7b97u6cd5

  • The failure detection of dynamical system can be considered as the classification between the subset with failure and the subset without failure . So the intelligent decision algorithm for failure detection is derived .

    u52a8u6001u7cfbu7edfu7684u6545u969cu68c0u6d4bu53ef u5f52u7ed3u4e3au7cfbu7edfu6709u6545u969cu548cu65e0u6545u969cuff0cu7531u6b64u7ed9u51fau4e86u6545u969cu68c0u6d4bu7684u667au80fdu51b3u7b56 u7b97u6cd5u3002

  • This model includes a historical database a procedure of searching for the nearest neighbor subset and its optimization algorithm and the technique of predict and estimation .

    u8be5u6a21u578bu5305u62ecu5386u53f2u6837u672cu6570u636eu5e93u3001u8fd1u90bbu5b50u96c6u641cu7d22u7a0bu5e8fu3001u8fd1u90bb u5b50u96c6u4f18u5316 u7b97u6cd5u548cu9884u62a5u91cfu4f30u8ba1u6280u672fu3002

  • On the Complexity of Solving Low-Density Subset Sum Problem with the Lattice Basis Reduction Algorithm

    u683cu57fau7ea6u5316 u7b97u6cd5u89e3u4f4eu5bc6u5ea6 u5b50u96c6u548cu95eeu9898u7684u590du6742u5ea6

  • The simulation results show that the algorithm has preferable robustness and can effectively resist all kinds of subset attacks . 3 . A digital watermarking algorithm for authenticating the database integrity is proposed .

    u5b9eu9a8cu4effu771fu8868u660euff0cu8be5u7b97u6cd5u5177u6709u8f83u597du7684u9c81u68d2u6027uff0cu80fdu62b5u5fa1u5404u79cdu5b50 u96c6u653bu51fbu30023u3001u63d0u51fau4e00u79cdu9274u5b9au6570u636eu5e93u5185u5bb9u5b8cu6574u6027u7684u8106u5f31u6027u6c34u5370 u7b97u6cd5u3002

  • Given the same feature subset the proposed genetic algorithm utilizes fewer samples and obtains greater accuracy than random sampling .

    u540cu4ee5u5f80u7684u968fu673au62bdu6837u65b9u6cd5u76f8u6bd4uff0cu5728u540cu6837u7684u7279u5f81 u5b50u96c6u7684u60c5u51b5u4e0buff0cu672c u65b9u6cd5u4f7fu7528u7684u6837u672cu6570u91cfu66f4u5c11u4e14u9884u6d4bu51c6u786eu7387u66f4u9ad8u3002

  • At each iteration the C-Step method originated from the MCD estimator is adopted to adjust the subset and to ensure the robustness of the algorithm by ejecting outliers .

    u5728u6bcfu6b21u8fedu4ee3u4e2duff0cu4f7fu7528 C-Stepu65b9u6cd5u5bf9u96c6u5408u8fdbu884cu8c03u6574uff0cu4eceu800cu4fddu8bc1u4e86 u7b97u6cd5u7684u9c81u68d2u6027u3002

  • The optimal feature subset which is searched by algorithm provides an important referential value for liver disease .

    u7b97u6cd5u641cu7d22u5230u7684u7279u5f81 u5b50u96c6u5bf9u4e8eu809du810fu75beu75c5u7684u7814u7a76u63d0u4f9bu4e86u91cdu8981u7684u53c2u8003u610fu4e49u3002

  • This paper by means of set theory presents a modified suboptimal subset polynomial regression algorithm based on abstract algebra . In the paper most of contents for regression process are adequately described and discussed in mathematics one important theorem and corollary are given .

    u63d0u51fau4ee5u96c6u5408u8bbau4e3au5de5u5177u5efau7acbu5728u62bdu8c61u4ee3u6570u7406u8bbau57fau7840u4e0au7684u4feeu6b63u6b21u4f18 u5b50u96c6u591au9879u5f0fu56deu5f52 u6cd5uff0cu5bf9u56deu5f52u8fc7u7a0bu7684u4e3bu8981u5185u5bb9u8fdbu884cu4e86u5145u5206u7684u6570u5b66u63cfu8ff0u548cu8ba8u8bbauff0cu7ed9u51fau4e86u4e00u4e2au91cdu8981u7684u5b9au7406u548cu63a8u8bbau3002

  • This method can get the best feature subset by searching the feature set using Quantum Evolution Algorithm .

    u8be5u65b9u6cd5u91c7u7528u91cfu5b50u8fdbu5316 u7b97u6cd5u5bf9u7279u5f81u5b50u96c6u8fdbu884cu641cu7d22uff0cu80fdu591fu641cu7d22u5230u6700u4f18u7279 u5f81 u5b50u96c6u3002

  • Experimental results show that as compared with several traditional algorithms higher image classification accuracies are achieved with the selected subset of features from the proposed algorithm .

    u5b9eu9a8cu8bc1u660eu8be5 u7b97u6cd5u9009u51fau7684u7279u5f81 u5b50u96c6 u7528u4e8eu56feu50cfu5206u7c7bu65f6uff0cu51c6u786eu7387u5f88u9ad8uff0cu4f18u4e8eu4f20u7edfu7684u51e0u79cdu65b9u6cd5u3002

  • The order of applied projections and the selection of subset in the cone beam iterative algorithm have a great effect on speed of convergence and accuracy in reconstructed images .

    u9525u675fu8fedu4ee3 u7b97u6cd5u4e2du7684u6295u5f71u6392u5e8fu548c u5b50u96c6u7684u9009u62e9uff0cu5bf9u9525u675fCTu56feu50cfu91cdu5efau901fu5ea6u548cu91cdu5efau7ed3u679cu6709u5f88u5927u5f71u54cdu3002

  • The sub-region subset algorithm is proposed . This algorithm selects LAPLACE edge detection operator seriously affected by noise to separate reconstruction images .

    u9488u5bf9u8be5u95eeu9898u63d0u51fau5206u57df u5b50u96c6 u7b97u6cd5uff0cu8be5u7b97u6cd5u9009u62e9u53d7u566au58f0u5f71u54cdu6bd4u8f83u5927u7684LAPLACEu8fb9u7f18u68c0u6d4bu7b97u5b50u5bf9u91cdu5efau540eu7684u56feu50cfu8fdbu884cu533au57dfu5212u5206u3002