If the left annihilator of any principal left ideal of End_R ( M ) is a direct summand of M then M is called left principally quasi-Baer .
u82e5EndRuff08Muff09u4e2du4efbu610fu5de6u4e3bu7406u60f3Iu5728Mu4e2du7684u5de6u96f6u5316u5b50u662fMu7684u76f4 u548cu9879uff0cu5219u79f0Mu662fu5de6u4e3bu62df-Baeru6a21u3002
( I ) Every maximal direct summand of M has unique complement .
uff08u2161uff09 u5982 K u4e3aMu7684 u4efbu4e00 u975e u96f6 u76f4 u548cu9879uff0cu5219u6709 Buff08uff1fuff09
Is generalized essential finitely generated - module if and only if for any generalized essential finitely generated sub-module there exists a type direct summand of such that N u2264 geK .
Mu662fu5e7fu4e49u57fau672cu6709u9650u751fu6210u7684TS1-u6a21u5f53u4e14u4ec5u5f53u5bf9 Mu7684u4efbu610fu5e7fu4e49u57fau672cu6709u9650u751f u6210u5b50u6a21Nuff0cu5b58u5728 KtMuff0cu4f7fu5f97Nu2264geKu3002
The Discussion of the Indecomposable Direct Summand of the Induced Module From u03b8 - Module
u5173u4e8eu03b8 H]-u6a21u7684u8bf1u5bfcu6a21u4e0du53efu5206u76f4 u548cu9879u7684u8ba8u8bba
In this paper we make some discussions in the central problem of the cancellation property of quasi discrete modules and obtain the following main results : ( 1 ) M has the lifting property if and only if any co closed submodule is a summand of M ;
u5bf9u62dfu79bbu6563u7684u6d88u53bbu6027u4f5cu4e86u8ba8u8bbauff0cu5f97u5230u5982u4e0bu4e3bu8981u7ed3u679cuff1auff081uff09u6a21Mu6709u63d0u5347u6027u5f53u4e14u4ec5u5f53Mu7684u6bcfu4e00u4e2au4f59u95edu5b50u6a21u662fMu7684 u76f4 u548cu9879uff1b
A ring R is called left ( right ) . G-regular if each finitely presented submodule of a free left ( right ) R - module is a summand .
u73afRu79f0u4e3au5de6uff08u53f3uff09G-u6b63u5219u73afuff0cu5982u679cu81eau7531u5de6uff08u53f3uff09R-u6a21u7684u6709u9650u8868u73b0u5b50u6a21u4e3au5176 u76f4 u548cu9879u3002
It proves that the direct summand of a weak CS-module is not a weak CS-module by using a counter example and that the weak CS-module satisfying the C_3-condition is of the hereditary property for its direct summand .
u8bbau6587u901au8fc7u4e00u4e2au53cdu4f8bu8bc1u660eu4e86u5f31CSu6a21u7684u76f4 u548cu9879u4e0du4e00u5b9au662fu5f31CSu6a21.u4f46u6ee1u8db3u6761u4ef6C3u7684u5f31CSu6a21u5bf9u5176u76f4u548cu9879u5177u6709u9057u4f20u6027u3002
Adjoint clifford rings and the rings with small circle semigroups are characterized in terms of circle multiplication and a ( commutative ) adjoint Clifford ring is constructed in which Jacobson radical is not a summand so as to confirm a conjecture of ( Heatherly ) and Tucci .
u5229u7528u5708u4e58u523bu753bu4e86u4f34u968fCliffordu73afu548cu6709u5c0fu5708u534au7fa4u7684u73afuff0cu6784u9020u4e86u4e00u4e2au4ea4u6362u7684u4f34u968fCliffordu73afuff0cu5176Jacobsonu6839u4e0du662f u76f4 u548cu9879uff0cu4eceu800cu8bc1u5b9eu4e86Heatherlyu548cTucciu7684u4e00u4e2au731cu6d4bu3002
美['sʌmænd]英['sʌmænd]
n.被加数