tridiagonal matrix

三对角线矩阵

  • A mathematics model for process column was developed also by using the improved tridiagonal matrix method the simulate calculation had been done on the process column .

    建立工艺塔的数学模型,并且应用改进的 对角 矩阵法对其进行了模拟计算。

  • Newton Iterative Arithmetic of a Unreduced Symmetric Tridiagonal Matrix with Eigenvalues

    不可约对称 对角 矩阵特征值的Newton迭代算法

  • LU method for solving block tridiagonal matrix equations and its applications

    对角 矩阵方程的追赶法及其应用

  • Estimation on the inverse elements of a certain tridiagonal matrix

    一类 对角 矩阵逆元素的估计式

  • With the LU decomposition of the block tridiagonal matrix an explicit expression of the block inverse elements is obtained .

    由块 对角 矩阵的LU分解,得到了其逆矩阵块元素的显式表达式。

  • Natural convection in annular enclosure is simulated numerically using collocated 3D cylindrical coordinate . The cyclic tridiagonal matrix ( CTDMA ) method is adopted to solve the discretization equations .

    用三维圆柱坐标同位网格方法求解环形空间中的自然对流,用周期性 对角 (CTDMA)方法求解所形成的代数方程。

  • An Integrated Method for Solving the Eigenvalue Problem of a Tridiagonal Matrix

    对角 矩阵整体求解方法

  • The path polynomial P k (λ) k ≥ 1 is the characteristic polynomial of the tridiagonal matrix with 1 ′ s on the super and subdiagonals and zeros elsewhere ;

    道路多项式Pk(λ)是上,下 对角线元素是1,其它元素为0的k阶 方阵的特征多项式,k≥1;

  • The estimation on the inverse elements of strictly diagonally dominant tridiagonal matrix is established ; in this estimation the nonnegative condition of matrix elements is moved .

    利用严格 对角占优和 对角 矩阵 某些 特性,推导出严格对角占优 对角 矩阵逆元素的统一估计式。

  • The Fast Algorithm for Inverting Block Tridiagonal Matrix and Block Period Tridiagonal Matrix

    求分块 对角 矩阵和分块周期三对角矩阵逆矩阵的快速算法

  • First an unsymmetric tridiagonal matrix T is transformed into a symmetric tridiagonal matrix T . Then with the symmetric tridiagonal matrix T and a displacement σ given an algorithm of solving for the simplified matrix from the matrix T is presented .

    首先将非对称 对角 矩阵T化为对称三对角矩阵T,对于对称三对角矩阵T和位移σ,给出由T求其简化矩阵^T的算法。

  • The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers but all the research work is limited in standard eigenproblems of symmetric tridiagonal matrix .

    近年来,随着并行机的发展,提出了代数特征值问题的并行多分法,但国内外的研究工作迄今仅限于对称 对角 矩阵的标准特征值问题。

  • In addition we focuses on the iterative algorithms based on diagonal matrix splitting and up tridiagonal matrix splitting because the channel matrix property of diagonal dominant and column wise diagonal dominant respectively .

    同时根据串音信道矩阵的对角占优和列对角占优特性,重点研究了 对角分裂迭代算法和上 三角分裂迭代算法。

  • To obtain the optimum operation condition of batch fractionating for enrichment of 1 3 5-Mesitylene from C9 aromatic mixture a batch fractionating model is established and used to simulate the process based on tridiagonal matrix method .

    为考察以间歇精馏法富集C9芳烃混合物中的均三甲苯的适宜工艺条件,借助 对角 矩阵法,建立间歇精馏模型对该过程进行了计算机模拟。

  • The New Algorithms for Computing the Condition Number of Tridiagonal Matrix

    计算 对角 矩阵条件数的新算法

  • The investigation is based on three methods : the twisted factorization 、 LU factorization of tridiagonal matrix and expression the block inverse matrix with four block column vectors . And then three simple algorithms are derived .

    分别基于块 对角 矩阵的绞形分解、块LU分解和基于用四个分块的列向量表示块逆矩阵三种方法进行了研究,得到三个简单算法。

  • A new algorithm of solving block tridiagonal systems is proposed which is based on the special factorization of block tridiagonal matrix .

    根据块 对角 矩阵的特殊分解,给出了求解块三对角方程组的新算法。

  • Solving Eigenvalue of a Kind of Block Tridiagonal Matrix and its Application

    一类块 对角 特征值的求解及应用

  • The interpolation method can be obtained by solving the equations group with terminal condition and coefficient matrix is a tridiagonal matrix .

    插值法通过解一个带有边界条件的方程组实现,而且方程组的系数矩阵是一个 对角 矩阵,通过 特殊 对角 解法能很方便地求出模型参数。

  • This paper provides two FORTRAN subroutines for the two computational problems of the symmetric tridiagonal matrix ( solution of the system of liner algebraic equations and computation of the generalized eigenvalues and eigenvectors ) .

    提供两个高效而实用的FORTRAN程序(例行子程序形式),用于对称 对角 矩阵的两个计算问题(其一是线性代数方程组的求解,其二是广义特征值问题的计算)。

  • Evaluating the factors of block tridiagonal matrix and its application

    对角 分解因子的估值与应用

  • The construction of a symmetric tridiagonal matrix from major eigen-pairs

    由主特征对构造对称 对角 矩阵

  • Through mathematic analysis and operations the conditions for determining the tridiagonal matrix and its relative matrices with the same form as obtained by Lanczos algorithm are proved some theorems are established .

    证明了具有与Lanczos算法结果同样形式的 对角 矩阵及其相关矩阵的确定条件,同时给出了相应的定理。

  • A Note on an Expression for Inverse Elements of Tridiagonal Matrix

    对角 矩阵的逆元素表示式的新证明

  • The third part discusses the eigenvalues relationship between skew-symmetric tridiagonal matrix and its concomitant matrix ( special symmetric diagonal matrix with diagonal elements are zero ) .

    第三部分讨论了反对称 对角 矩阵与其相伴矩阵(对角元为零的特殊对称三对角矩阵)特征值之间的关系。

  • From the formulas of the conjugate gradient a similarity between a symmetric positive definite ( SPD ) matrix A and a tridiagonal matrix B is obtained . The elements of the matrix B are determined by the parameters of the conjugate gradient .

    本文从共轭梯度法的公式推导出对称正定阵A与 对角 B的相似关系,B的元素由共轭梯度法的迭代参数确定。

  • Two Fortran Subroutines for Symmetric Tridiagonal Matrix

    对称 对角 矩阵的两个FORTRAN程序

  • The former is applicable to a general tridiagonal matrix without any additional conditions .

    前者适用于不需任何附加条件的一般 对角 矩阵

  • The 2N-dimension Hilbert space associated with quantum information transfer over the spin chain can be projected into an N + 1-dimension subspace so the Hamiltonian of the system will be reduced to a tridiagonal matrix in standard basis .

    在一大类N量子比特自旋链中,与量子信息传输对应的2N维希尔伯特空间可以简化为一个N+1维子空间。系统的哈密顿量也因此可以化为一个 对角 矩阵

  • Conditions Determining the Relative Matrices for Mapping Transformation of a Complex Tridiagonal Matrix

    对角 矩阵映化过程中确定各相关矩阵的条件